Tutorial problems (23750) for "Solar Energy" lecture (23745), WS 2014/2015 Michael Oldenburg & Bryce Richards Tutorial Questions #7:

1. Heat Capacity

The heat capacity is the quantity which states how much energy is needed to heat up one gram of a material by one Kelvin.

- a) Calculate the energy which is needed to increase the temperature from 15°C to 70°C of 300 I water $\left(c = 4.187 \frac{J}{g \cdot K}\right)$.
- **b)** A solar system with a nominal power of $4 kW_p$ is used to heat the amount of water in a). What should the PSH be to provide the temperature increase?
- c) Assuming that the amount of 300 l is covering a surface of 1 m^2 and exposed to the sunlight. What time is needed to heat it up (AM1.5)?

2. Solar thermal system

Propylene glycol $\left(\rho = 1.04 \frac{g}{cm^3}, c = 3 \frac{J}{g \cdot K}\right)$ is used in a solar thermal system as heat carrier. The flux velocity is $300 \frac{l}{h}$. During one cycle it got heat up from $41^{\circ}C$ to $71^{\circ}C$ and is cooled down by a water reservoir from $67^{\circ}C$ to $44^{\circ}C$.

- a) What is the amount of heat transferred from the propylene glycol to water?
- **b)** Assume an irradiation power of $0.8 \frac{kW}{m^2}$ and a surface of $10 m^2$. How much of the solar energy is used for the heating process?
- c) How much energy get lost between the collector and the heat exchanger?